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R
ecent advances in thermal micro-
scopy1�5 have opened the door to
understanding nonequilibrium ther-

modynamics at the nanoscale. The none-
quilibrium temperature distribution in a
quantum system subject to a thermal or
electric gradient can now be probed experi-
mentally, raising a number of fundamental
questions: Can significant temperature
variations occur across individual atoms or
molecules without violating the uncertainty
principle? How are the electronic and lattice
temperatures related in a nanostructure out
of thermal equilibrium? How does the clas-
sical Fourier lawof heat conduction emerge6,7

from this quantum behavior in the macro-
scopic limit?
In order to address these questions the-

oretically, a definition of a nanoscale ther-
mometer that is both realistic and mathe-
matically rigorous is needed. According to
the principles of thermodynamics, a ther-
mometer is a small system (probe) with
some readily identifiable temperature-
dependent property that can be brought
into thermal equilibrium with the system of
interest (sample). Once thermal equilibrium
is established, the net heat current between
probe and sample vanishes,8�10 and the

resulting temperature of the probe consti-
tutes ameasurement of the sample tempera-

ture. High spatial and thermal resolution
require that the thermal coupling between
probe and sample is local4 and that the
coupling between the probe and the ambi-
ent environment is small,2 respectively.
It should be emphasized that, out of

equilibrium, the temperature distributions
of differentmicroscopic degrees of freedom
(e.g., electrons and phonons) do not, in
general, coincide, so that one has to distin-
guish between measurements of the elec-
tron temperature8,11 and the lattice tem-
perature.10,12 This distinction is particularly
acute in the extreme limit of elastic quantum
transport,13 where electron and phonon
temperatures are completely decoupled.
In this article, we develop a realistic mod-

el of a scanning thermal microscope (SThM)
operating in the tunneling regime in ultra-
high vacuum, where the vacuum tunneling
gap ensures that phonon heat conduction
to the probe is negligible. Since electrons
carry both charge and heat, an additional
condition is necessary to define an electron
thermometer. We proceed by noting that,
as a practical matter, in order to reduce the
thermal coupling of the thermometer to the
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ABSTRACT A precise definition for a quantum electron thermometer is

given, as an electron reservoir coupled locally (e.g., by tunneling) to a sample,

and brought into electrical and thermal equilibrium with it. A realistic model of

a scanning thermal microscope with atomic resolution is then developed,

including the effect of thermal coupling of the probe to the ambient

environment. We show that the temperatures of individual atomic orbitals

or bonds in a conjugated molecule with a temperature gradient across it exhibit

quantum oscillations, whose origin can be traced to a realization of Maxwell's

demon at the single-molecule level. These oscillations may be understood in

terms of the rules of covalence describing bonding inπ-electron systems. Fourier's law of heat conduction is recovered as the resolution of the temperature

probe is reduced, indicating that the macroscopic law emerges as a consequence of coarse graining.

KEYWORDS: quantum thermometer . scanning thermal microscope (SThM) . three-terminal heat transport theory .
definition of temperature . single-molecule heat transport . thermoelectric effects . Fourier's law . rules of covalence
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ambient environment, it should formanopen electrical
circuit (or have very high impedance to ground). This
ensures that, in addition to the heat current, the
electrical current between sample and probe vanishes.
This second condition is also necessary to ensure the
thermometer is in local equilibrium with the sample.
An electron thermometer is thus defined as an electron
reservoir whose temperature is fixed by the conditions
of electric and thermal equilibrium with the sample:

I(ν)p ¼ 0, ν ¼ 0, 1 (1)

where Ip � �eIp
(0) and Ip

Q � Ip
(1) are the electric current

and heat current, respectively, flowing into the probe.
In an idealmeasurement, the samplewould be the sole
source of charge and heat flowing into the probe, but
we also consider nonideal measurements, where
there is an additional thermal coupling to the ambi-
ent environment. In practice, this coupling plays a
crucial role in limiting the resolution of temperature
measurements.4

In a measurement of the temperature distribution in
a conductor subject to thermal and/or electric gradi-
ents, the electron thermometer thus serves as an open
third terminal in a three-terminal thermoelectric
circuit, a generalization of Büttiker's voltage probe
concept14 (see Figure 1). Note that the conditions of
eq 1 allow a local temperature to be defined under
general thermoelectric bias conditions, relevant for
the analysis of nonequilibrium thermoelectric device
performance.15�18

Previous theoretical analyses of quantum electron
thermometers either completely neglected thermo-
electric effects8,9,19 or considered the measurement
scenario of eq 1 as only one of several possible cases,20�23

without giving definitive arguments for one case over
the others. The subtle definition of local temperature
given in ref 11 (thermometer causesminimal perturba-
tion of system dynamics), on the other hand, may
capture the spirit of our two separate conditions, at
some level. A recent review of the topic is given in ref
24. To our knowledge, a theoretical analysis of the
effect of finite coupling of the temperature probe to
the ambient environment has not previously been
undertaken.
Using our model of a nanoscale electron thermo-

meter, we investigate the nonequilibrium temperature
distributions in single-molecule junctions subject to a
thermal gradient. Quantum temperature oscillations
analogous to those predicted in one-dimensional
systems11 are predicted in molecular junctions for
several different conjugated organic molecules and
are explained in terms of the rules of covalence
describing bonding in π-conjugated systems. In terms
of directing the flow of heat, the rules of covalence can
be seen as an embodiment of Maxwell's demon at the
single-molecule level.

It has been argued that in some systems quantum
temperature oscillations can be washed out by either
dephasing6 or disorder,7 leading to restoration of Fourier's
classical law of heat conduction. However, in molecular
junctions the required scatteringwould be so strong as to
dissociate themolecule. We investigate the effect of finite
spatial resolution on the nonequilibrium temperature
distribution and find that Fourier's law emerges naturally
as a consequence of coarse-graining of the measured
temperature distribution. Thus our resolution of the ap-
parent contradiction between Fourier's macroscopic law
of heat conduction and the predicted nonmonotonic
temperature variations at the nanoscale is that the quan-
tum temperature oscillations are really there, provided the
temperature measurement is carried out with sufficient
resolution to observe them, but that Fourier's law
emerges naturally when the resolution of the thermo-
meter is reduced.
This paper is organized as follows: We first derive a

general linear-response formula for an electron ther-
mometer. A realistic model of a scanning thermal
microscope with sub-nanometer resolution is then
developed, including a discussion of thermal coupling
of the probe to the environment. Finally, results for the
nonequilibrium temperature distributions in several
single-molecule junctions subject to a thermal gradi-
ent are presented, and the implications of our findings
are discussed.

RESULTS AND DISCUSSION

Electronic Temperature Probe. Consider a general sys-
tem with M electrical contacts. Each contact R is
connected to a reservoir at temperature TR and elec-
trochemical potential μR. In linear response, the elec-
trical current �eIR

(0) and heat current IR
(1) flowing into

reservoir R may be expressed as

I(ν)R ¼ ∑
M

β¼ 1

L (ν)
Rβ(μβ � μR)þ

L (νþ 1)
Rβ

T
(Tβ � TR)

2
4

3
5 (2)

where L (ν)
Rβ is an Onsager linear-response coefficient.

Equation 2 is a completely general linear-response
formula and applies to macroscopic systems, meso-
scopic systems, nanostructures, etc., including elec-
trons, phonons, and all other degrees of freedom,
with arbitrary interactions between them. For a discus-
sion of this general linear-response formula applied to
bulk systems, see ref 25.

Figure 1. Schematic representation of a temperature probe
as an open third terminal of a thermoelectric circuit.
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In this article, we consider systems driven out of
equilibrium by a temperature gradient between reser-
voirs 1 and 2. Thermoelectric effects are included, so
the chemical potentials of the various reservoirs may
differ. We consider pure thermal circuits (i.e., open
electrical circuits), for which IR

(0) = 0 " R. These condi-
tions may be used to eliminate the chemical potentials
μR from eq 2, leading to a simpler formula for the heat
currents:

IQR � I(1)R ¼ ∑
3

β¼ 1

K~Rβ(Tβ � TR) (3)

In the absence of an external magnetic field L (ν)
Rβ ¼

L (ν)
βR and the three-terminal thermal conductances are

given by

K~Rβ ¼ 1
T

L (2)
Rβ � [L (1)

Rβ]
2

L
~ (0)

Rβ

2
4

� L (0)
L (1)

RγL
(1)
Rβ

L (0)
RγL

(0)
Rβ

þ L (1)
γβL

(1)
Rβ

L (0)
γβL

(0)
Rβ

� L (1)
RγL

(1)
γβ

L (0)
RγL

(0)
γβ

0
@

1
A
3
5 (4)

with

L
~(0)
Rβ ¼ L (0)

Rβ þ
L (0)

RγL
(0)
γβ

L (0)
Rγ þ L (0)

γβ

(5)

and

1

L (0) ¼
1

L (0)
12

þ 1

L (0)
13

þ 1

L (0)
23

(6)

An equivalent circuit forL
~(0)
Rβ andL

(0) is given in Figure 2.
The first line of eq 4 resembles the familiar

two-terminal thermal conductance17,26,27 κRβ =
[L (2)

Rβ � (L (1)
Rβ)

2=L (0)
Rβ]/T with L (0)

Rβ replaced by eq 5.
Since L (2)

Rβ is usually the dominant term, κ~Rβ is often
comparable to the two-terminal form κRβ (cf. Figure 6).
However, the discrepancy is sizable in some cases.
Although it might be tempting to interpret the second
line in eq 4 as a nonlocal quantum correction to the
thermal conductance, it should be emphasized that
this is a generic three-terminal thermoelectric effect
that arises in bulk systems as well as nanostructures.

Temperature Measurement. In addition to the cou-
pling of the temperature probe to the system of interest,

we assume the probe also has a small thermal coupling
κp0 to the environment at temperature T0. The envi-
ronment could be, for example, the blackbody radia-
tion or gaseous atmosphere surrounding the circuit or
the cantilever/driver on which the temperature probe
is mounted. The heat current flowing from the envir-
onment into the probe must be added to eq 3 to
determine the total heat current:

IQp ¼ ∑
2

β¼ 1

K~pβ(Tβ � Tp)þKp0(T0 � Tp) (7)

Thermal coupling to the environment is important
when the coupling to the system is weak, and it is a
limiting factor in the thermal resolution of any tem-
perature probe. The environment is effectively a fourth
terminal in the thermoelectric circuit; however, we
consider only thermal coupling of the probe to the
environment, so the thermal conductances κ~p1, κ~p2 in
eq 7 have the three-terminal form (eq 4). Solving eqs 1
and 7 for the temperature, we find

Tp ¼ K~p1T1 þK~p2T2 þKp0T0
K~p1 þK~p2 þKp0

(8)

for a probe in thermal and electrical equilibrium with,
and coupled locally to, a system of interest. Experi-
mentally, the reduction of the thermal response of the
probe at finite κp0 is characterized by the sensitivity:4

S � DTp
DTs

¼ Kps

Kps þKp0
(9)

where Ts is the sample temperature and κps = κ~p1þ κ~p2
is the total thermal conductance between the probe
and the sample. Equation 9 follows directly from eq 8
with T1 = T2 = Ts.

Equations 4 and 8 provide a general definition of an

electron thermometer coupled to a system with a
temperature gradient across it, in the linear response
regime. Equation 8 can be rewritten in the following
instructive form:

Tp ¼ T0 þ S(T � T0)þ CΔT=2 (10)

where T1 = T þ ΔT/2, T2 = T �ΔT/2, S is the sensitivity,
and C is the contrast defined by

C ¼ K~p1 � K~p2

K~p1 þK~p2 þKp0
(11)

For the case of a symmetric thermal bias (T = T0),
Tp� T0 is proportional to the contrast, and the second term
on the right-hand side of eq 10 is zero. A symmetric
thermal bias is of particular interest from a theoretical
point of view, but may be difficult to realize in the
laboratory, where it is common to heat one electrode
and keep the other electrode at ambient temperature;
T1 = T0 þ ΔT, T2 = T0. Here we point out that it is
possible to extract the quantity of theoretical inter-
est C (i.e., quantum temperature oscillations) from a

Figure 2. Equivalent circuit for L
~(0)
Rβ and L (0), where the

resistance RRβ = [e2L (0)
Rβ]

� 1. e2L (0) is the loop con-
ductance of the circuit and e2L

~(0)
Rβ is the effective two-

terminal conductance between terminals R and β.
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sequence of two measurements: (a) where both elec-
trodes are heated, T1 = T2 = T0 þ ΔT, yielding Tp

(a) =
T0 þ SΔT ; and (b) where only one electrode is heated,
T1 = T0þΔT, T2 = T0, yielding Tp

(b) = T0þ SΔT=2þ CΔT=2.
Then 2Tp

(b) � Tp
(a) = T0 þ CΔT . In the remainder of this

article, we focus on the case of a symmetric thermal
bias. Explicit results for a junction where one electrode
is heated and the other is kept at ambient temperature
are given in the Supporting Information.

Quantum Electron Thermometer. We consider nanoscale
junctions with weak electron�phonon coupling oper-
ating near room temperature. Under linear-response
conditions, electron�phonon interactions and inelas-
tic scattering areweak in such systems, and the indirect
phonon contributions to L (0)

Rβ and L (1)
Rβ can be

neglected, while the direct phonon contribution to
L (2)

pβ is negligible due to the vacuum tunneling gap.
The linear response coefficients needed to evaluate
eq 8 may thus be calculated using elastic electron
transport theory:17,26,27

L (ν)
Rβ ¼ 1

h

Z
dE(E � μ0)

νTRβ(E) � Df0
DE

� �
(12)

where f0 is the equilibrium Fermi�Dirac distribution of
the electrodes at chemical potential μ0 and tempera-
ture T0. The transmission function may be expressed
as13,28

TRβ(E) ¼ TrfΓR(E) G(E) Γβ(E) G†(E)g (13)

where ΓR(E) is the tunneling-width matrix for lead R
and G(E) is the retarded Green's function of the
junction.

SPM-Based Temperature Probe of a Single-Molecule Junction.
As an electron thermometer with atomic-scale resolu-
tion, we propose using a scanning probe microscope
(SPM) with an atomically sharp conducting tip mounted
on an insulating piezo actuator designed to minimize
the thermal coupling to the environment. The tip could
serve, for example, as a bolometer or thermocouple,4

and its temperature could be read out electrically using
ultrafine shielded wiring. The proposed setup is essen-
tially a nanoscale version of the commercially available
SThM and is analogous to the ground-breaking SThM
with 10 nm resolution developed by Kim et al.,4 but
operating in the tunneling regime rather than the
contact regime.

Such an atomic-resolution electron thermometer
could be used to probe the local temperature distribu-
tion in a variety of nanostructures/mesoscopic systems
out of equilibrium. In the following, we focus on the
specific example of a single-molecule junction (SMJ)
subject to a temperature gradient, with no electrical
current flowing. In particular, we consider junctions
containing conjugated organic molecules, the relevant
electronic states of which are determined by the
π-orbitals. We consider transition metal tips, where

tunneling is dominated by the d-like orbitals of the
apex atom.29

The tunnel coupling between the tip of the elec-
tronic temperature probe and the π-system of
the molecule is described by the tunneling-width
matrix29,30

Γp
nm(E) ¼ 2πVnV

�
mFp(E) (14)

where n andm label π-orbitals of the molecule, Fp(E) is
the local density of states on the apex atom of the
probe, and Vm is the tunneling matrix element be-
tween the evanescent tip wave function and orbitalm
of the molecule. Since the temperature probe is in the
tunneling regime, and not the contact regime, the
phonon contribution to the transport vanishes; heat
is exchanged between system and probe only via the
electron tunneling characterized by Γp.

In Figure 3, the trace of Γp(EF) is shown for a
Pt temperature probe held 3.5 Å above the plane
of a Au�[1,4]benzenedithiol�Au ([1,4]BDT) molecu-
lar junction. A schematic of the [1,4]BDT junction is
also shown, with sulfur and gold atoms drawn to
scale using their covalent radii of 102 and 134 pm,
respectively. Peaks in Tr{Γp} correspond to the loca-
tions of carbon π-orbitals, labeled with black num-
bers. Γp determines the tunneling transmission
probabilities through eq 13 and the thermoelectric
response coefficients through eq 12. These in turn
determine the measured temperature through eqs 4
and 8.

The density of states (DOS) of the Au�para BDT�Au
junction is shown in Figure 4, simulated using our
many-body theory including the electrostatic influ-
ence of the thiol end groups. Our many-body theory
accurately reproduces the fundamental gap of gas-
phase benzene (∼10.4 eV), allowing us to unambigu-
ously determine the energy-level alignment between
the electrodes and molecule. Transport occurs within
the HOMO�LUMO gap, but is dominated by the

Figure 3. Calculated spatial map of Tr{Γp} for a Pt electron
thermometer scanned 3.5 Å above the plane of a benzene
molecule and a schematic representation of a para-
benzenedithiol ([1,4]BDT) junction. Peak values of Tr{Γp}
≈ 16.6 meV correspond to the centers of the carbon atoms,
which are numbered in black. The sulfur and gold atoms
were drawn using their covalent radii of 102 and 134 pm,
respectively.

A
RTIC

LE



BERGFIELD ET AL . VOL. 7 ’ NO. 5 ’ 4429–4440 ’ 2013

www.acsnano.org

4433

HOMO resonance. This is true for all of the molecular
junctions considered in this article.

Coupling to the Environment. The thermal coupling κp0

of the temperature probe to the ambient environment
places stringent limits on the thermal resolution of a
SThM.2,4 An accurate temperature measurement re-
quires either sensitivity S � 1 (κps . κp0), so that
Tp ≈ Ts, or S � const, so that it may be taken as a con-
stant correction factor.4 In the tunneling regime inves-
tigated in the present work, we shall see that S 6¼ const,
so that accurate temperature measurements require
high sensitivity. Nonetheless, we demonstrate that the
qualitative features of the nonequilibrium temperature
distribution can be faithfully captured even when S, 1.

In the simulations presented here, we consider both
a very weak environmental coupling (κp0 = 10�4

κ0, for
which S � 1 over much of the sample) and a fairly
strong environmental coupling (κp0 = 10κ0, for which
S, 1). Here κ0 = (π2/3)(kB

2T/h) = 2.84 � 10�10 W/K is
the thermal conductance quantum.31,32 For compar-
ison, the UHV SThM of Kim et al.4 recently achieved
κp0≈ 700κ0. Observation of the quantumeffects on the
nonequilibrium temperature distribution predicted
theoretically11 and investigated in this work would
require a significant reduction of κp0 compared to
the current experimental state of the art, not unlike
the push to observe quantumeffects in nanofabricated
oscillators.35

There are both practical and fundamental limits on
κp0. In a gaseous atmosphere, SThM resolution is
limited by convection.2 In the UHV SThM of ref 4, κp0
is dominated by conduction through the cantilever
upon which the temperature probe is mounted.
A fundamental limitation is radiative coupling to the
ambient blackbody environment, for which

Kp0 ¼ 4εAσT0
3 (15)

where ε and A are the emissivity and surface area,
respectively, of the metal tip, and σ = (π2kB

4/60p3c2) is

the Stefan�Boltzmann constant. The ratio

Kp0

K0
¼ 2πεA

5
kBT0
pc

� �2

¼T0 ¼ 300K 2:1εA

(10 μm)2
(16)

The conducting tip of the temperature probe must
thus have linear dimensions R j 10 μm in order to
resolve quantum effects at room temperature. A con-
ducting tip of small volume will also ensure rapid
equilibration of the probe with the sample (see
Methods section).

We do not include the direct radiative contribution
to κ~p1 and κ~p2. Since the separation between electro-
des 1 and 2 is much less than the photon thermal
wavelength, we consider that blackbody radiation
from the two electrodes contributes to a common
ambient environment at temperature T = T0. Near-field
effects may lead to an increase of κp0 over the value
given by eq 15, but the contribution to κp0 due to near-
field radiation is nonetheless estimated to be quite
small1 and slowly varying spatially compared to elec-
tronic processes. We do not consider radiative cou-
pling of the probe to the molecule itself due to the
strong quantum suppression of radiative heat transfer
for structures smaller than the thermal wavelength.36

Nonequilibrium Temperature Distributions. In this sec-
tion, we investigate the spatial temperature profiles
for three Au�benzenedithiol�Au (BDT) junction geo-
metries, a linear [1,6]hexatrienedithiol junction, and a
polycyclic [2,7]pyrenedithiol junction. The BDT and
hexatriene SMJ calculations were performed using a
molecular Dyson equation many-body transport
theory13 in which the molecular π-system is solved
exactly, including all charge and excited states, and the
lead-molecule tunneling is treated to infinite order
(see Methods section). The transport calculations for
the pyrene junction were performed using Hückel
theory (see Supporting Information). In all cases, the
ambient temperature is taken as T0 = 300 K.

Benzenedithiol Junctions. We investigate the tempera-
ture distributions for three Au�benzenedithiol�Au
(BDT) junction geometries: the “para” [1,4]BDT junc-
tion, shown schematically along with the trace of the
lead-molecule coupling matrix in Figure 3, the “ortho”
[1,2]BDT junction, and the “meta” [1,3]BDT junction.
The calculated spatial temperature distribution for
each junction configuration is shown in Figure 5, for
both weak and strong environmental couplings, with
T1 = 325 K and T2 = 275 K. The figure illustrates
quantum oscillations of the local temperature near
the molecules, which are clearly resolvable using our
model of a nanoscale electron thermometer. In each
junction, the π-orbitals of the molecule have a char-
acteristic temperature different from that of its
nearest neighbors. For instance, in the para junction
orbitals 2 and 6 are hot, orbitals 3 and 5 are cold, while
orbitals 1 and 4, directly connected to the hot and cold

Figure 4. Spectral function A(E) = �1/π Im Tr{G} of a
Au�[1,4]BDT�Au (para) junction in the vicinity of the HOMO
and LUMO resonances, calculated using many-body theory
including the effect of the partially charged sulfur atoms on
the intramolecular potential. In all benzene simulations
Γ1 = Γ2 = 0.69 eV and the excess charge on the thiol end-
groups≈�0.29e, values that give the best agreement with
the measured thermopower16 and linear-response conduc-
tance31 measurements. The blue line indicates the Pt
probe's Fermi energy, EF

Pt = �5.53 eV, averaged over the
[110], [111], [320], and [331] crystal planes.32
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electrodes, respectively, have intermediate tempera-
tures. Comparing the upper and lower panels of the
same figure, we see that when the thermal coupling
between the probe and the ambient environment is
weaker, the thermal oscillations are observed over
larger length scales, whereas stronger coupling
reduces the resolution of these quantum effects. The
calculated temperature distribution was found to be
nearly independent of the strength of the tip�sample
coupling Γp, except inasmuch as this affects the sensi-
tivity S of the measurement (see Methods and Sup-
porting Information).

Quantum oscillations of the temperature in a nano-
structure subject to a temperature gradient are a
thermal analogue of the voltage oscillations predicted
by Büttiker14 in a quantum system with an electrical
bias. Similar temperature oscillations in one-dimen-
sional quantum systems were first predicted by Dubi
and Di Ventra.11

In order to understand the temperature oscillations
shown in Figure 5, it is useful to consider the thermal
conductance κ~p1 between the probe and the hot
electrode. Figure 6a indicates that κ~pβ is large when
the probe is in the ortho or para configuration relative
to electrode β, as well as when it is proximal to the
π-orbital directly coupled to the electrode. However,
κ~pβ is nearly zero when the probe is in the meta
configuration relative to electrode β. The three-
terminal correction to the thermal conductance Δκp1
is plotted in Figure 6b, which indicates that three-
terminal thermoelectric effects lead to a sizable relative

correction to the thermal conductance between the
probe and the electrode in themeta configuration, but
are otherwise small.

When κ~p1 . κ~p2, eq 8 implies the probe will
measure a temperature near T1, and vice versa when
κ~p1 , κ~p2, provided the coupling to the environment
is not too large. On the other hand, the probe will
measure a temperature near T0 if κ~p1 ≈ κ~p2. Compar-
ing the para temperature profile shown in Figure 5a,b
to Figure 6, one sees that π-orbitals 2 and 6 are hot
because when the SThM is coupled locally to them it is
in an ortho configuration relative to the hot electrode
and ameta configuration relative to the cold electrode,
and κ~ortho . κ~meta. Orbitals 3 and 5 are cold by
symmetry. On the other hand, orbitals 1 and 4 have
intermediate temperatures since κ~p1 ≈ κ~p2 when the
SThM is in a para configuration relative to one elec-
trode and proximal to the other.

The quantum temperature oscillations in the para
junction can also be understood in terms of the rules of
covalence in conjugated systems. Figure 7 shows the
Kekulé contributing structures illustrating charge
transfer from an electrode E to a benzene molecule.
Considering both hot and cold electrodes, the rules of
covalence dictate that electrons from the hot electrode
are available to tunnel onto the temperature probe
when it is coupled locally to orbital 2, 4, or 6, while
electrons from the cold electrode are available to
tunnel when the probe is near orbital 1, 3, or 5. In
addition, electrons from the hot electrode are available
to tunnel onto the temperature probe when it is near

Figure 5. Calculated spatial temperature distributions of para ([1,4]BDT]), ortho ([1,2]BDT), and meta ([1,3]BDT) junctions
measured by a Pt SThM scanned 3.5 Å above the plane of carbon nuclei with T1 = 325 K and T2 = 275 K. Each junction is shown
for weak (upper panels) and strong (lower panels) SThM-environment coupling strengths. (a�d) Quantum oscillations of the
temperature are clearly visible in the vicinity of the molecule, which can be explained in terms of the Kekulé contributing
structures shown in Figure 7. (e, f) Temperature distribution of the meta junction exhibits well-defined “bond temperatures”
arising from off-diagonal contributions to the thermal transport, in addition to the “orbital temperatures” of orbitals 1 and 3
proximal to the hot and cold electrodes, respectively. For these profiles,maxfSg � 0.9 for κp0 = 10�4κ0 andmaxfSg � 1.1 �
10�4 for κp0 = 10κ0, indicating temperature oscillations can be observed even with small sensitivities (see Methods section).
The sulfur linker atoms are included in the transport calculations and are shownas red andblue circles, indicating the contacts
to the hot and cold leads, respectively.
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orbital 1, which is proximal to the hot electrode, while
electrons from the cold electrode are available to
tunnel onto the temperature probe when it is near
orbital 4, which is proximal to the cold electrode.
Orbitals 2 and 6 thus appear hot, orbitals 3 and 5
appear cold, while orbitals 1 and 4 should exhibit
intermediate temperatures by this argument.

The calculated temperature distribution of an ortho
BDT junction is shown in Figure 5c,d, measured under
the same conditions as the para junctions. The Kekulé
contributing structures illustrated in Figure 7 dictate
that lone pairs from the hot electrode may tunnel to
orbital 2, 4, or 6, and lone pairs from the cold electrode
may tunnel to orbital 1, 3, or 5. Taking into account that
orbitals 1 and 2 are also proximal to the linker groups
binding the molecule to the hot and cold electrodes,
respectively, and thus exhibit intermediate tempera-
tures, the rules of covalence dictate that orbitals 4 and

6 appear hot, while orbitals 3 and 5 appear cold, in
complete agreement with the calculated temperature
distribution.

For the para and ortho junctions the rules of
covalence act essentially like a Maxwell demon, in
that they selectively permit electrons from the hot or
cold reservoir to tunnel onto the probe when it is at
specific locations near the molecule and block elec-
trons from the other reservoir. The situation is
analogous to the “temperature demon”,37 wherein
a tiny being controls the transfer of gas molecules
between two containers, allowing only fast-moving
molecules to flow from container 1 to container 2
and only slow-moving molecules to flow in the
opposite sense, leading to a violation of the second
law of thermodynamics. Rather than gas molecules,
the present case involves electrons, while the mo-
lecular junction and metal tip of the SThM represent
containers 1 and 2, respectively. When the tempera-
ture probe is at one of the hot spots in Figure 5,
the rules of covalence do not allow electrons within
the molecule, chosen at random, to tunnel onto the
tip, but only electrons with an energy distribution
characteristic of the hot reservoir;a distribution
hotter than the mean temperature of the molecule.
As the probe equilibrates at such a hot spot,
heat is thus transferred from the molecule to the
probe, whose temperature is higher than the mean
temperature of the molecule.

The questionmight arise whether the actions of this
would-be Maxwell demon could lead to a violation of
the second law of thermodynamics, as Maxwell origin-
ally hypothesized. However, in this case there is no
violation of the second law, because electrons within
the molecule “remember” which electrode they came
from. There is no “mixing” of the hot and cold electrons
in the absence of inelastic scattering, which is strongly
suppressed compared to elastic processes in these
junctions at room temperature.

Figure 7. Kekulé contributing structures illustrating charge
transfer from an electrode E onto benzene. Here a second
line between atoms represents a double bond, a dot
represents an unpaired electron, and (þ) and (�) are the
charges of the atoms in a given electronic configuration.
Within resonance theory, the quantum state of the inter-
acting system is given by a linear combination of these
contributing structures. The rules of covalence in conju-
gated systems dictate that electrons from an electrode are
available to tunnel onto the temperature probe when it is
coupled locally to the molecule in an ortho or para config-
uration relative to the electrode.

Figure 6. (a) Thermal conductance κ~p1 between lead 1 (hot) and the temperature probe p. κ~p1 is largest when p is in an ortho
or para configuration relative to the hot electrode or proximal to it (near orbitals 1, 2, 4, or 6) and smallest when it is in a meta
configuration relative to the hot electrode (near orbitals 3 and 5). (b) The difference between the three- and two-terminal
thermal conductances, κ~p1 � κp1, showing the largest errors (1.03 � 10�6κ0) occurs where κ~p1 is small (near sites 3 and 5),
indicating large relative errors if a two-terminal formulation were used. Here κ0 = (π2/3)kB

2T0/h = 2.84 � 10�10W/K with
T0 = 300 K.
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The calculated temperature distribution of a meta
BDT junction is shown in the rightmost panels of
Figure 5. In this case, the temperature distribution is
more complicated, exhibiting both well-defined “orbi-
tal temperatures” (1 and 3) and “bond temperatures”
(4�5 and 5�6 bonds). The temperatures of orbitals 1
and 3 can be explained by the arguments given above,
while the rules of covalence illustrated in Figure 7
indicate that electrons from neither the hot electrode

nor the cold electrode can reach orbital 5, so that its
temperature is indeterminate. Near orbital 5, off-diag-
onal contributions to the transmission dominate due
to the suppression of transmission in the meta config-
uration. The para transmission amplitude interferes
constructively with the small but nonzero meta trans-
mission amplitude, while the ortho transmission
amplitude interferes destructively with the meta trans-
mission amplitude, so that the 4�5 bond appears hot,
while the 5�6 bond appears cold.

[1,6]Hexatrienedithiol Junction. The calculated tem-
perature distribution of a [1,6]hexatrienedithiol junc-
tion composed of a thioloated six-site linear molecule

(hexatriene) covalently bonded to two gold electrodes
is shown in Figure 8. The conditions of the temperature
measurement are the same as described in Figure 5.
Quasi-one-dimensional temperature oscillations are
clearly observable along the length of the molecular
wire, consistent with the prediction of ref 11. The
resonance contributing structures describing electron
transfer from an electrode E onto the molecule are
shown in Figure 9. As in the case of the para and ortho
BDT junctions, the rules of covalence are unambiguous
and predict alternating hot and cold temperatures for
the π-orbitals along the length of the molecule, with
intermediate temperatures for the end orbitals prox-
imal to the two electrodes, consistent with the calcu-
lated temperature distribution.

[2,7]Pyrenedithiol Junction. As a final example, we
consider the effects of finite spatial resolution on the
measured temperature distribution of a polycyclic
[2,7]pyrenedithiol�Au junction. The temperature dis-
tribution was calculated for three different values of
the SThM spatial resolution in the three panels of
Figure 10: The leftmost panel shows the maximum
spatial resolution under the specifications of a hypo-
thetical SThM described in Figure 5. The middle and
rightmost panels show the measured temperature
distributions with reduced spatial resolution obtained
by convolving the tip�sample tunnel-couplingΓp with
Gaussian distributions with standard deviations of σ =
0.5 and 1.0 Å, respectively (full resolution corresponds
to σ = 0). Many-body transport calculations for this
larger molecule are currently computationally intract-
able, so we have utilized Hückel theory to describe
the molecular electronic structure (see Supporting
Information).

The leftmost panel of Figure 10 shows a complex
interference pattern of hot and cold regions with a
symmetry that mimics the junction itself (in this case
with twomirror axes). More complexmolecules such as
this highlight the “proximity effect” whereby the flow
of heat from a given electrode to the orbitals in its
vicinity is enhanced, so the molecule is generally
warmer near the hot lead and cooler near the cold
lead. We mention that, although more tedious, the
Kekulé contributing structures38 can be used to under-
stand the pattern of temperature variations in this
molecule as well.

Focusing on the middle and rightmost panels of
Figure 10, we find an immediate consequence of
the proximity effect as σ is increased: nonmonotonic
temperature variations due to quantum interference
are washed out, and the underlying temperature gra-
dient appears. In the rightmost panel, quantum tem-
perature oscillations are no longer resolved, and the
temperature distribution resembles a thermal dipole.
Similar results were obtained for a variety of molecular
junctions, suggesting that a classical temperature
distribution consistent with Fourier's law of heat

Figure 9. Resonance contributing structures for a hexa-
triene junction. For a given electrode E, the lone pair can
occupy only every other π-orbital, giving rise to the alter-
nating hot, cold temperature profile shown in Figure 8.

Figure 8. Calculated temperature distribution for a Au�
[1,6]hexatrienedithiol�Au molecular junction, measured
under the same conditions discussed in Figure 5. The
observed temperature oscillations can be explained using
the resonance contributing structures shown in Figure 9.
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conduction emerges when the temperature is mea-
sured with limited spatial resolution.

The transition frommicroscopic quantum tempera-
ture oscillations to macroscopic diffusive behavior and
Fourier's law is still poorly understood.24 It has been
argued that Fourier's law is recovered in systems with
sufficient dephasing6 or disorder.7 However, we have
seen that in conjugated organic molecules the quan-
tum temperature oscillations are intimately connected
to the rules of covalence describing the π-bonds of the
molecule. Dephasing (or disorder) sufficient to wash
out the temperature oscillations would thus necessa-
rily sever the π-bonds and dissociate the molecule.
Since the molecules studied in this article are stable at
room temperature, we know that such strong dephas-
ing cannot be present. Thus we predict that quantum
temperature oscillations will be observed in molecular
junctions if temperature measurements with sufficient
spatial resolution are performed and that Fourier's
law is a consequence of coarse-graining due to finite
spatial resolution.

CONCLUSIONS

We have proposed a physically motivated and
mathematically rigorous definition of an electron ther-
mometer as an electron reservoir coupled locally to
and in both thermal and electrical equilibriumwith the
systembeingmeasured [cf. eq 1]. This definition is valid
under general nonequilibrium conditions with arbi-
trary thermal and/or electric bias. On the basis of
this definition, we have developed a realistic model
of an atomic-resolution SThM operating in the tun-
neling regime in ultrahigh vacuum, including the
effect of thermal coupling of the probe to the ambient
environment.
We used this model of an atomic-resolution

SThM to investigate the nonequilibrium temperature

distributions of a variety of single-molecule junctions
subject to thermal gradients. Quantum oscillations of
the local temperature that can be observed using an
SThM with sufficiently high resolution are predicted.
We show that in many cases these quantum tempera-
ture oscillations may be understood straightforwardly
in terms of the rules of covalence describing bonding
in π-electron systems. As such, these oscillations
are predicted to be extremely robust, insensitive to
dephasing or disorder that is insufficient to dissociate
the molecule. Instead, we show that such quantum
interference effects are washed out if the spatial
resolution of the SThM is insufficient to observe them
and that the temperature distribution then approaches
that expected based on Fourier's classical law of heat
conduction. Reduced thermal resolution of the SThM
does not wash out the temperature oscillations, but
merely reduces their observed amplitude.
One may wonder whether it is meaningful to define

a temperature that varies significantly from place to
place at the atomic scale. Since temperature is related
to mean thermal energy, does a variation of tempera-
ture on a scale comparable to the de Broglie wave-
length not violate the uncertainty principle? Our
answer to such questions is a pragmatic one: By
definition, temperature is that which is measured by
a thermometer, and the position of a thermometer can
certainly be controlled with subatomic precision using
standard scanning probe techniques. We should also
emphasize that our proposed thermometer measures
the electron temperature, whichmay be largely decoupled
from the lattice temperature in nanoscale junctions.
Finally, let us return to the theme of the title of this

article. We have shown that in a molecular junction
containing a conjugated organic molecule, the rules of
covalence act essentially like a Maxwell demon, in that
they selectively permit electrons from the hot or cold

Figure 10. Calculated spatial temperature distribution for a Au�[2,7]pyrenedithiol�Au junction with T1 = 325 K and T2 = 275 K,
measured at a heightof 3.5Åabove theplaneof themolecule, for threedifferent values of SThMspatial resolution. The leftmostpanel
showsthemaximumspatial resolutionunder thespecificationsofahypotheticalSThMdescribed inFigure5.Themiddleandrightmost
panels show themeasured temperature distributionswith reduced spatial resolution obtained by convolving the tip�sample tunnel-
couplingΓpwithGaussiandistributionswith standarddeviationsofσ=0.5and1.0Å, respectively (full resolutioncorresponds toσ=0).
In the rightmost panel, quantum temperature oscillations are no longer resolved, and the temperature distribution resembles a
thermal dipole. Similar results were obtained for a variety of molecular junctions, suggesting that a classical temperature distribution
consistent with Fourier's law of heat conduction emerges due to measurements with limited spatial resolution.
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reservoir to tunnel onto the probe, when it is at specific
locations near the molecule, and block electrons from
the other reservoir. The question might arise whether
the actions of this Maxwell demon could lead to a
violation of the second law of thermodynamics, as
Maxwell originally hypothesized. However, in this case
there is no violation of the second law, because

electrons within the molecule “remember”which elec-
trode they came from. There is no “mixing” of the hot
and cold electrons in the absence of inelastic scatter-
ing, and we have argued that dephasing due to
inelastic scattering is insufficient to perturb this parti-
cular embodiment of Maxwell's demon without dis-
sociating the molecule itself.

METHODS
Molecular Dyson Equation Many-Body Quantum Transport Theory. In

the energy domain and using matrix notation, the Green's
function of a molecular junction may be expressed exactly via
the molecular Dyson equation (MDE) as13

G ¼ Gmol þGmolΣG (17)

where Gmol is the interacting molecular Green's function found
in the limit of weak tunnel coupling to the electrodes, but
including long-range Coulomb interactions between the
π-electrons. The self-energy Σ = ΣT þ ΔΣC, where ΣT is the
tunneling self-energy associated with the lead-molecule bonds
and ΔΣC is the correction to the Coulomb self-energy arising
from lead-molecule coherence. The molecular Dyson equation
is exact: the derivation of eq 17 requires no approximations.13

MDE theory describes both Coulomb blockade (particle-like)
and resonant tunneling (wave-like) effects simultaneously, both
of which are important in molecular junction transport experi-
ments. Away from resonance and at room temperatureΔΣC≈ 0,
an approximation that is discussed in detail in ref 13.

The tunneling self-energy associated with a given electrode
can be expressed as ΣT

R = VRgR(E)[VR]†, where gR(E) is the
retarded Green's function for lead R, and VR describes the

tunneling between lead R and the molecule. In the wide-band
limit the energy dispersion of the electrode is assumed to be
slowly varying and the tunneling self-energy is given by

ΣT ¼ � i

2∑R
ΓR (18)

where ΓR is the tunneling-width matrix associated with lead R.
Aside from the self-energy, the other ingredient needed to

evaluate eq 17 is the Green's function of the isolated molecule.
This is determined exactly (in the limited Hilbert space of the
π-electrons) by first finding the few-body eigenstates |νæ and
eigenenergies Eν of the isolated molecule and then using these
to explicitly evaluate the molecular Green's function:13

Gmol ¼ ∑
ν, ν0

[P(ν)þ P(ν0)]C(ν, ν0)
E � (Eν0 � Eν)þ i0þ

(19)

Here P(ν) is the statistical occupancy of the νth eigenstate, given
at equilibrium by the grand canonical ensemble (sufficient for
linear response transport calculations), and

Cnσ,mσ0 (ν, ν0) ¼ Æνjdnσ jν0æÆν0jd†mσ0 jνæ (20)

are many-body matrix elements. dmσ
† creates an electron with

spin σ in the mth π-orbital of the molecule.
Equations 17�20 provide a method for obtaining the full

interacting Green's function of the molecule coupled to the
electrodes, which may then be used to calculate the various
physical quantities of interest. For instance, the heat and charge
currents given by eq 2 involve G(E) via eqs 12 and 13.

Equilibration Time for a Nanoscale Thermometer. The heat capa-
city of the probe must be sufficiently small to ensure an
equilibration time that is less than any drift times in an experi-
mental system. Using eq 3, we have

I(1)p � CV
dTp
dt

¼ K~p1(T1 � Tp)þK~p2(T2 � Tp)

þKp0(T0 � Tp) (21)

where Ip
(1) is the heat current into the probe, and C and V are the

heat capacity and volume of the metal tip of the probe,
respectively. Equation 21 leads to the following first-order
differential equation:

dTp
dt

¼ τ�1(Tp � Tp) (22)

where

Tp ¼ K~p1T1 þK~p2T2 þKp0T0
K~p1 þK~p2 þKp0

(23)

and the equilibration time of the temperature probe is given by

τ ¼ CV

K~p1 þK~p2 þKp0
(24)

For a Pt probe tip with linear dimensions on the order of
1 μm, Ve 4/3πr3 = 4.19� 10�12 cm3, and CVe 1.17� 10�11J/K,
where the specific heat CPt = (133 J/kgK)� (0.021 kg/cm3).32 The
spatial equilibration time profiles for such a Pt probe fixed 3.5 Å

Figure 11. Calculated equilibration time of a Pt SThMprobe
fixed 3.5 Å above (a) a Au�[1,4]BDT�Au junction and (b) a
Au�[2,7]pyrenedithiol�Au junction. Theseequilibration times
are upper bounds since we set κp0 = 0. The SThM tip's volume
was taken to be that of a sphere with a diameter of 1 μm.
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above a Au�[1,4]BDT�Au and a Au�[2,7]pyrenedithiol�Au
junction are shown in panels a and b of Figure 11, respectively.
All calculations are performed with κp0 = 0 and are thus upper
bounds on the true equilibration time given by eq 24. In both
cases, the equilibration times are on the order of tens of
nanoseconds when the SThM is above the molecule.

Sensitivity. The sensitivity profiles of para-, ortho-, and meta-
configured BDT junctions measured using a Pt SThM probe
scanned 3.5 Å above the plane of the molecule are shown in
Figure 12. These simulations indicate that even with low
sensitivity (i.e., when κp0 = 10κ0) the quantum oscillations of
the temperature (cf. Figure 5) are still experimentally resolvable.
With current experimental techniques κp0≈ 700κ0, which gives
a temperature range of∼30 μK for the BDT junctions discussed
here. In order to experimentally observe these quantum tempera-
tureoscillations, the environmental coupling to theprobewill have
to be decreased and/or the temperature precision increased.
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